
Chapter 5

SQL: Data Manipulation

2

SELECT Statement

SELECT [DISTINCT | ALL]

{* | [columnExpression [AS newName]] [,...] }

FROM TableName [alias] [, ...]

[WHERE condition]

[GROUP BY columnList] [HAVING condition]

[ORDER BY columnList]

3

SELECT Statement

SELECT Specifies which columns are to
appear in output

FROM Specifies table(s) to be used
WHERE Filters rows
GROUP BY Forms groups of rows with same

column value

HAVING Filters groups subject to some
condition

ORDER BY Specifies order of output

4

SELECT Statement

• Order of clauses cannot be changed

• Only SELECT and FROM are mandatory

5

Example 6.1 All Columns, All Rows

List full details of all staff.

SELECT staffNo, fName, lName, address,
position, sex, DOB, salary, branchNo

FROM Staff;

• Can use * as an abbreviation for ‘all columns’:

SELECT *
FROM Staff;

6

Example 6.1 All Columns, All Rows

7

Example 6.2 Specific Columns, All Rows

Produce a list of salaries for all staff, showing
only staff number, first and last names, and
salary.

SELECT staffNo, fName, lName, salary

FROM Staff;

8

Example 6.2 Specific Columns, All Rows

9

Example 6.3 Use of DISTINCT

List the property numbers of all properties
that have been viewed.

SELECT propertyNo

FROM Viewing;

10

Example 6.3 Use of DISTINCT

• Use DISTINCT to eliminate duplicates:

SELECT DISTINCT propertyNo

FROM Viewing;

11

Example 6.4 Calculated Fields

Produce list of monthly salaries for all staff,
showing staff number, first/last name, and
salary.

SELECT staffNo, fName, lName, salary/12

FROM Staff;

12

Example 6.4 Calculated Fields

• To name column, use AS clause:

SELECT staffNo, fName, lName, salary/12

AS monthlySalary

FROM Staff;

13

Example 6.5 Comparison Search Condition

List all staff with a salary greater than 10,000.

SELECT staffNo, fName, lName, position,
salary

FROM Staff

WHERE salary > 10000;

14

Example 6.6 Compound Comparison Search Condition

List addresses of all branch offices in London
or Glasgow.

SELECT *

FROM Branch

WHERE city = ‘London’ OR city = ‘Glasgow’;

15

Example 6.7 Range Search Condition

List all staff with a salary between 20,000 and
30,000.

SELECT staffNo, fName, lName, position,
salary
FROM Staff

WHERE salary BETWEEN 20000 AND 30000;

• BETWEEN test includes endpoints of range

16

Example 6.7 Range Search Condition

17

Example 6.7 Range Search Condition

• Negated version - NOT BETWEEN

• BETWEEN does not add much to SQL’s
expressive power. Could also write:

SELECT staffNo, fName, lName, position, salary
FROM Staff

WHERE salary>=20000 AND salary <= 30000;

• Useful for range of values

18

Example 6.8 Set Membership

List all managers and supervisors.

SELECT staffNo, fName, lName, position

FROM Staff

WHERE position IN (‘Manager’, ‘Supervisor’);

19

Example 6.8 Set Membership

•Negated version (NOT IN)

• IN does not add much to SQL’s expressive power.
Could have expressed this as:

SELECT staffNo, fName, lName, position

FROM Staff

WHERE position=‘Manager’ OR

position=‘Supervisor’;

• IN more efficient when set contains many values

20

Example 6.9 Pattern Matching

Find all owners with the string ‘Glasgow’ in
their address.

SELECT ownerNo, fName, lName, address,
telNo

FROM PrivateOwner

WHERE address LIKE ‘%Glasgow%’;

21

Example 6.9 Pattern Matching

• SQL has two special pattern matching
symbols:

– %: sequence of zero or more characters

– _ (underscore): any single character

• LIKE ‘%Glasgow%’ means sequence of
characters of any length containing ‘Glasgow’

22

Example 6.10 NULL Search Condition

List details of all viewings on property PG4
where a comment has not been supplied.

• There are 2 viewings for property PG4, one
with and one without a comment.

• Have to test for null explicitly using special
keyword IS NULL:

SELECT clientNo, viewDate
FROM Viewing
WHERE propertyNo = ‘PG4’ AND

comment IS NULL;

23

Example 6.10 NULL Search Condition

• Negated version (IS NOT NULL) can test for non-
null values

24

Example 6.11 Single Column Ordering

List salaries for all staff, arranged in
descending order of salary.

SELECT staffNo, fName, lName, salary

FROM Staff

ORDER BY salary DESC;

25

Example 6.11 Single Column Ordering

26

Example 6.12 Multiple Column Ordering

Produce abbreviated list of properties in
order of property type.

SELECT propertyNo, type, rooms, rent

FROM PropertyForRent

ORDER BY type;

27

Example 6.12 Multiple Column Ordering

28

Example 6.12 Multiple Column Ordering

• Four flats in this list - as no minor sort key
specified, system arranges these rows in any
order it chooses

• To arrange in order of rent, specify minor
order:

SELECT propertyNo, type, rooms, rent
FROM PropertyForRent

ORDER BY type, rent DESC;

29

Example 6.12 Multiple Column Ordering

30

SELECT Statement - Aggregates

• ISO standard defines five aggregate functions:

COUNT - returns number of values in specified
column

SUM - returns sum of values in specified column

AVG - returns average of values in specified column

MIN - returns smallest value in specified column

MAX - returns largest value in specified column

31

SELECT Statement - Aggregates

• Each operates on single column of table and
returns single value

• COUNT, MIN, and MAX apply to numeric and
non-numeric fields

– SUM and AVG used on numeric fields only

• Each function eliminates nulls first and
operates only on remaining non-null values

– Except COUNT

32

SELECT Statement - Aggregates

• COUNT(*) counts all rows of table

– Includes nulls and duplicate values

• Can use DISTINCT before column name to
eliminate duplicates

• DISTINCT has no effect with MIN/MAX

– Has effect with SUM/AVG

33

SELECT Statement - Aggregates

• Aggregate functions used only in SELECT list and HAVING
clause

• If SELECT list includes an aggregate function and there is no
GROUP BY clause, SELECT list cannot reference column out
with aggregate function

• Illegal:

SELECT staffNo, COUNT(salary)

FROM Staff;

34

Example 6.13 Use of COUNT(*)

How many properties cost more than £350
per month to rent?

SELECT COUNT(*) AS myCount

FROM PropertyForRent

WHERE rent > 350;

35

Example 6.14 Use of COUNT(DISTINCT)

How many different properties viewed in
May ‘04?

SELECT COUNT(DISTINCT propertyNo) AS myCount

FROM Viewing

WHERE viewDate BETWEEN ‘1-May-04’

AND ‘31-May-04’;

36

Example 6.15 Use of COUNT and SUM

Find number of Managers and sum of their
salaries.

SELECT COUNT(staffNo) AS myCount,

SUM(salary) AS mySum

FROM Staff

WHERE position = ‘Manager’;

37

Example 6.16 Use of MIN, MAX, AVG

Find minimum, maximum, and average
staff salary.

SELECT MIN(salary) AS myMin,

MAX(salary) AS myMax,

AVG(salary) AS myAvg

FROM Staff;

38

SELECT Statement - Grouping

• Use GROUP BY clause to get sub-totals

• SELECT and GROUP BY closely integrated:

– Each item in SELECT list must be single-valued
per group

– SELECT clause may only contain:
• column names

• aggregate functions

• constants

• expression involving combinations of above

39

SELECT Statement - Grouping

• All column names in SELECT list must appear in GROUP BY
clause unless name used only in aggregate function

• If WHERE used with GROUP BY:

– WHERE applied first

– Then groups formed from remaining rows satisfying
predicate

• ISO considers two nulls to be equal for purposes of GROUP
BY

40

Example 6.17 Use of GROUP BY

Find number of staff in each branch and
their total salaries.

SELECT branchNo,

COUNT(staffNo) AS myCount,

SUM(salary) AS mySum

FROM Staff

GROUP BY branchNo

ORDER BY branchNo;

41

Example 6.17 Use of GROUP BY

42

Restricted Groupings – HAVING clause

• HAVING clause designed for use with GROUP BY to restrict
groups that appear in final result table

• Similar to WHERE:

– WHERE filters individual rows

– HAVING filters groups

• Column names in HAVING clause must appear in GROUP BY
list or be contained within aggregate function

43

Example 6.18 Use of HAVING

For each branch with more than 1 member of
staff, find number of staff in each branch and
sum of their salaries.

SELECT branchNo,
COUNT(staffNo) AS myCount,

SUM(salary) AS mySum
FROM Staff
GROUP BY branchNo
HAVING COUNT(staffNo) > 1
ORDER BY branchNo;

44

Example 6.18 Use of HAVING

45

Subqueries

• Some SQL statements can have SELECT
embedded within them

• Ssubselect can be used in WHERE and
HAVING clauses of an outer SELECT

– Called subquery or nested query

• Subselects may also appear in INSERT,
UPDATE, and DELETE statements

46

Example 6.19 Subquery with Equality

List staff who work in branch at ‘163 Main St’.

SELECT staffNo, fName, lName, position

FROM Staff

WHERE branchNo =

(SELECT branchNo

FROM Branch

WHERE street = ‘163 Main St’);

47

Example 6.19 Subquery with Equality

• Inner SELECT finds branch number for branch
at ‘163 Main St’ (‘B003’).

• Outer SELECT then retrieves details of all
staff who work at this branch.

• Outer SELECT then becomes:

SELECT staffNo, fName, lName, position

FROM Staff

WHERE branchNo = ‘B003’;

48

Example 6.19 Subquery with Equality

49

Example 6.20 Subquery with Aggregate

List all staff whose salary is greater than the average salary,
and show by how much.

SELECT staffNo, fName, lName, position,

salary – (SELECT AVG(salary) FROM Staff) As SalDiff

FROM Staff

WHERE salary >

(SELECT AVG(salary)

FROM Staff);

50

Example 6.20 Subquery with Aggregate

• Cannot write ‘WHERE salary > AVG(salary)’

• Instead, use subquery to find average salary
(17000), and then use outer SELECT to find
those staff with salary greater than this:

SELECT staffNo, fName, lName, position,

salary – 17000 As salDiff

FROM Staff

WHERE salary > 17000;

51

Example 6.20 Subquery with Aggregate

52

Subquery Rules

• ORDER BY clause may not be used in subquery
– May be used in outermost SELECT

• Subquery SELECT list must consist of single
column name or expression
– Except for subqueries that use EXISTS

• By default, column names refer to table name
in FROM clause of subquery

• Can refer to table in FROM using alias

53

Subquery Rules

• When subquery is operand in comparison

– Subquery must appear on right-hand side

• Subquery may not be used as operand in an
expression

54

Example 6.21 Nested subquery: use of IN

List properties handled by staff at ‘163 Main St’.

SELECT propertyNo, street, city, postcode, type, rooms, rent

FROM PropertyForRent

WHERE staffNo IN

(SELECT staffNo

FROM Staff

WHERE branchNo =

(SELECT branchNo

FROM Branch

WHERE street = ‘163 Main St’));

Chapter 6

SQL: Data Manipulation Cont’d

56

ANY and ALL

• ANY and ALL used with subqueries that
produce single column of numbers

• ALL
– Condition only true if satisfied by all values

produced by subquery
• ANY

– Condition true if satisfied by any values produced
by subquery

• If subquery empty
– ALL returns true
– ANY returns false

• SOME may be used in place of ANY

57

Example 6.22 Use of ANY/SOME

Find staff whose salary is larger than salary of
at least one member of staff at branch B003.

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary > SOME

(SELECT salary

FROM Staff

WHERE branchNo = ‘B003’);

58

Example 6.22 Use of ANY/SOME

• Inner query produces set {12000, 18000,
24000} and outer query selects those staff
whose salaries are greater than any values in
set

59

Example 6.23 Use of ALL

Find staff whose salary is larger than salary
of every member of staff at branch B003.

SELECT staffNo, fName, lName, position, salary

FROM Staff

WHERE salary > ALL

(SELECT salary

FROM Staff

WHERE branchNo = ‘B003’);

60

Example 6.23 Use of ALL

61

Multi-Table Queries

• Can use subqueries provided result columns
come from same table

• If result columns come from more than one
table
– Must use join

• To perform join
– Include more than one table in FROM clause

• Use comma as separator and typically include
WHERE clause to specify join column(s)

62

Multi-Table Queries

• Possible to use alias for table named in
FROM clause

• Alias separated from table name with space

• Alias can be used to qualify column names
when there is ambiguity

63

Example 6.24 Simple Join

List names of all clients who have viewed a
property along with any comment supplied.

SELECT c.clientNo, fName, lName,

propertyNo, comment

FROM Client c, Viewing v

WHERE c.clientNo = v.clientNo;

64

Example 6.24 Simple Join

• Only those rows from both tables that have
identical values in clientNo columns
(c.clientNo = v.clientNo) included in result

• Equivalent to equi-join in relational algebra

65

Alternative JOIN Constructs

• SQL provides alternative ways to specify joins:

FROM Client c JOIN Viewing v ON c.clientNo = v.clientNo

FROM Client JOIN Viewing USING clientNo

FROM Client NATURAL JOIN Viewing

• FROM replaces original FROM and WHERE

66

Example 6.25 Sorting a join

For each branch, list numbers and names
of staff who manage properties, and
properties they manage.

SELECT s.branchNo, s.staffNo, fName, lName,
propertyNo

FROM Staff s, PropertyForRent p
WHERE s.staffNo = p.staffNo
ORDER BY s.branchNo, s.staffNo, propertyNo;

67

Example 6.25 Sorting a join

68

Example 6.26 Three Table Join

For each branch, list staff who manage
properties, including city in which branch is
located and properties they manage.

SELECT b.branchNo, b.city, s.staffNo, fName, lName,
propertyNo

FROM Branch b, Staff s, PropertyForRent p
WHERE b.branchNo = s.branchNo AND

s.staffNo = p.staffNo
ORDER BY b.branchNo, s.staffNo, propertyNo;

69

Example 6.26 Three Table Join

• Alternative formulation for FROM and WHERE:

FROM (Branch b JOIN Staff s USING branchNo) AS

bs JOIN PropertyForRent p USING staffNo

70

Example 6.27 Multiple Grouping Columns

Find number of properties handled by each
staff member by branch.

SELECT s.branchNo, s.staffNo, COUNT(*) AS myCount

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.branchNo, s.staffNo

ORDER BY s.branchNo, s.staffNo;

71

Example 6.27 Multiple Grouping Columns

72

Computing a Join

Procedure for generating results of a join are:

1. Form Cartesian product of tables named in FROM clause

2. If WHERE clause:

– Apply search condition to each row of product table

– Retain rows that satisfy condition

3. For each remaining row, determine value of each item in
SELECT list to produce single row in result table

73

Computing a Join

4. If DISTINCT specified, eliminate any duplicate
rows from result table

6. If ORDER BY clause, sort result table as
required

74

Outer Joins

• If one row of joined table is unmatched, row
omitted from result table

• Outer join operations retain rows that do not
satisfy join condition

• Consider following tables:

75

Outer Joins

• The (inner) join of these two tables:

SELECT b.*, p.*

FROM Branch1 b, PropertyForRent1 p

WHERE b.bCity = p.pCity;

76

Example 6.28 Left Outer Join

List branches and properties that are in
same city along with any unmatched
branches.

SELECT b.*, p.*

FROM Branch1 b LEFT JOIN

PropertyForRent1 p ON b.bCity = p.pCity;

77

Example 6.28 Left Outer Join

• Includes rows of first (left) table unmatched
with rows from second (right) table

• Columns from second table filled with NULLs

78

Example 6.29 Right Outer Join

List branches and properties in same city
and any unmatched properties.

SELECT b.*, p.*

FROM Branch1 b RIGHT JOIN

PropertyForRent1 p ON b.bCity = p.pCity;

79

Example 6.29 Right Outer Join

• Right Outer join includes rows of second
(right) table unmatched with rows from first
(left) table

• Columns from first table filled with NULLs

80

Example 6.30 Full Outer Join

List branches and properties in same city
and any unmatched branches or properties.

SELECT b.*, p.*

FROM Branch1 b FULL JOIN

PropertyForRent1 p ON b.bCity = p.pCity;

81

Example 6.30 Full Outer Join

• Includes rows unmatched in both tables

• Unmatched columns filled with NULLs

82

EXISTS and NOT EXISTS

• EXISTS and NOT EXISTS used only with
subqueries

• Produce simple true/false result

• True if and only if there exists at least one
row in result table returned by subquery

• False if subquery returns empty result table

• NOT EXISTS is the opposite of EXISTS

83

EXISTS and NOT EXISTS

• As (NOT) EXISTS check only for existence or
non-existence of rows in subquery result
table, subquery can contain any number of
columns

• Common for subqueries following (NOT)
EXISTS to be of form:

(SELECT * ...)

84

Example 6.31 Query using EXISTS

Find all staff who work in a London branch.

SELECT staffNo, fName, lName, position

FROM Staff s

WHERE EXISTS

(SELECT *

FROM Branch b

WHERE s.branchNo = b.branchNo AND

city = ‘London’);

85

Example 6.31 Query using EXISTS

86

Example 6.31 Query using EXISTS

• Note, search condition s.branchNo =
b.branchNo is necessary to consider correct
branch record for each member of staff

• If omitted, would get all staff records listed
out because subquery:
SELECT * FROM Branch WHERE city=‘London’

• would always be true and query would be:
SELECT staffNo, fName, lName, position FROM Staff
WHERE true;

87

Example 6.31 Query using EXISTS

• Could also write this query using join
construct:

SELECT staffNo, fName, lName, position

FROM Staff s, Branch b

WHERE s.branchNo = b.branchNo AND

city = ‘London’;

88

Union, Intersect, and Difference (Except)

• Can use normal set operations of Union,
Intersection, and Difference to combine results
of two or more queries into single result table

• Union of two tables, A and B, is table
containing all rows in either A or B or both

• Intersection is table containing all rows
common to both A and B

• Difference is table containing all rows in A but
not in B

• Two tables must be union compatible

89

Union, Intersect, and Difference (Except)

• Format of set operator clause in each case is:

op [ALL] [CORRESPONDING [BY {column1 [, ...]}]]

• If CORRESPONDING BY specified, set operation
performed on the named column(s)

• If CORRESPONDING specified but not BY clause,
operation performed on common columns

• If ALL specified, result can include duplicate rows

90

Union, Intersect, and Difference (Except)

91

Example 6.32 Use of UNION

List all cities where there is either a branch
office or a property.

(SELECT city
FROM Branch
WHERE city IS NOT NULL) UNION
(SELECT city
FROM PropertyForRent
WHERE city IS NOT NULL);

92

Example 6.32 Use of UNION

• Or

(SELECT *
FROM Branch
WHERE city IS NOT NULL)
UNION CORRESPONDING BY city
(SELECT *
FROM PropertyForRent
WHERE city IS NOT NULL);

93

Example 6.32 Use of UNION

• Produces result tables from both queries and
merges both tables together.

94

Example 6.33 Use of INTERSECT

List all cities where there is both a branch
office and a property.

(SELECT city FROM Branch)

INTERSECT

(SELECT city FROM PropertyForRent);

95

Example 6.33 Use of INTERSECT

• Or

(SELECT * FROM Branch)

INTERSECT CORRESPONDING BY city

(SELECT * FROM PropertyForRent);

96

Example 6.33 Use of INTERSECT

• Could rewrite this query without INTERSECT
operator:

SELECT b.city
FROM Branch b PropertyForRent p
WHERE b.city = p.city;

• Or:
SELECT DISTINCT city FROM Branch b
WHERE EXISTS

(SELECT * FROM PropertyForRent p
WHERE p.city = b.city);

97

Example 6.34 Use of EXCEPT

List of all cities where there is a branch office
but no properties.

(SELECT city FROM Branch)
EXCEPT
(SELECT city FROM PropertyForRent);

• Or

(SELECT * FROM Branch)
EXCEPT CORRESPONDING BY city
(SELECT * FROM PropertyForRent);

98

Example 6.34 Use of EXCEPT

• Could rewrite this query without EXCEPT:
SELECT DISTINCT city FROM Branch
WHERE city NOT IN

(SELECT city FROM PropertyForRent);

• Or
SELECT DISTINCT city FROM Branch b
WHERE NOT EXISTS

(SELECT * FROM PropertyForRent p
WHERE p.city = b.city);

99

INSERT

INSERT INTO TableName [(columnList)]

VALUES (dataValueList)

• columnList optional; if omitted, SQL assumes list
of all columns in original CREATE TABLE order

• Any columns omitted must have been declared
as NULL when table was created, unless
DEFAULT specified when creating column

100

INSERT

• dataValueList must match columnList as
follows:

– number of items in each list must be same

– must be direct correspondence in position of
items in two lists

– data type of each item in dataValueList must
be compatible with data type of corresponding
column

101

Example 6.35 INSERT … VALUES

Insert a new row into Staff table supplying
data for all columns.

INSERT INTO Staff

VALUES (‘SG16’, ‘Alan’, ‘Brown’, ‘Assistant’, ‘M’,
Date‘1957-05-25’, 8300, ‘B003’);

102

Example 6.36 INSERT using Defaults

Insert a new row into Staff table supplying
data for all mandatory columns.

INSERT INTO Staff (staffNo, fName, lName,
position, salary, branchNo)

VALUES (‘SG44’, ‘Anne’, ‘Jones’,
‘Assistant’, 8100, ‘B003’);

• Or
INSERT INTO Staff
VALUES (‘SG44’, ‘Anne’, ‘Jones’, ‘Assistant’, NULL,

NULL, 8100, ‘B003’);

103

INSERT … SELECT

• Second form of INSERT allows multiple
rows to be copied from one or more tables
to another:

INSERT INTO TableName [(columnList)]

SELECT ...

104

Example 6.37 INSERT … SELECT

Assume there is a table StaffPropCount that
contains names of staff and number of
properties they manage:

StaffPropCount(staffNo, fName, lName, propCnt)

Populate StaffPropCount using Staff and
PropertyForRent tables.

105

Example 6.37 INSERT … SELECT

INSERT INTO StaffPropCount

(SELECT s.staffNo, fName, lName, COUNT(*)

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.staffNo, fName, lName)

UNION

(SELECT staffNo, fName, lName, 0

FROM Staff

WHERE staffNo NOT IN

(SELECT DISTINCT staffNo

FROM PropertyForRent));

106

Example 6.37 INSERT … SELECT

• If second part of UNION omitted, excludes those
staff who currently do not manage any
properties

107

UPDATE

UPDATE TableName

SET columnName1 = dataValue1

[, columnName2 = dataValue2...]

[WHERE searchCondition]

• TableName can be name of base table or
updatable view

• SET clause specifies names of one or more
columns to be updated

108

UPDATE

• WHERE clause is optional:

– if omitted, named columns are updated for all
rows in table

– if specified, only rows that satisfy
searchCondition updated

• New dataValue(s) must be compatible with
data type for corresponding column

109

Example 6.38/39 UPDATE All Rows

Give all staff a 3% pay increase.

UPDATE Staff
SET salary = salary*1.03;

Give all Managers a 5% pay increase.

UPDATE Staff
SET salary = salary*1.05
WHERE position = ‘Manager’;

110

Example 6.40 UPDATE Multiple Columns

Promote David Ford (staffNo=‘SG14’) to
Manager and change his salary to £18,000.

UPDATE Staff

SET position = ‘Manager’, salary = 18000

WHERE staffNo = ‘SG14’;

111

DELETE

DELETE FROM TableName

[WHERE searchCondition]

• TableName can be name of base table or updatable view

• searchCondition optional; if omitted, all rows deleted from
table

– Table not deleted

• If search_condition specified, only rows that satisfy
condition deleted

112

Example 6.41/42 DELETE Specific Rows

Delete all viewings that relate to property
PG4.

DELETE FROM Viewing
WHERE propertyNo = ‘PG4’;

Delete all records from the Viewing table.

DELETE FROM Viewing;

Chapter 7

SQL: Data Definition

Pearson Education © 2009

114

ISO SQL Data Types

Pearson Education © 2009

115

Integrity Enhancement Feature

• Integrity constraints:

– required data

– domain constraints

– entity integrity

– referential integrity

– general constraints.

Pearson Education © 2009

116

Integrity Enhancement Feature

Required Data

position VARCHAR(10) NOT NULL

Domain Constraints

(a) CHECK

sex CHAR NOT NULL

CHECK (sex IN (‘M’, ‘F’))

Pearson Education © 2009

117

Integrity Enhancement Feature

(b) CREATE DOMAIN

CREATE DOMAIN DomainName [AS] dataType

[DEFAULT defaultOption]

[CHECK (searchCondition)]

For example:

CREATE DOMAIN SexType AS CHAR

CHECK (VALUE IN (‘M’, ‘F’));

sex SexType NOT NULL

Pearson Education © 2009

118

Integrity Enhancement Feature

• searchCondition can involve a table lookup:

CREATE DOMAIN BranchNo AS CHAR(4)
CHECK (VALUE IN (SELECT branchNo

FROM Branch));

• Domains can be removed using DROP
DOMAIN:

DROP DOMAIN DomainName
[RESTRICT | CASCADE]

Pearson Education © 2009

119

IEF - Entity Integrity

• Primary key of table must contain unique, non-null value
for each row

• ISO standard supports FOREIGN KEY clause in CREATE and
ALTER TABLE statements:

PRIMARY KEY(staffNo)

PRIMARY KEY(clientNo, propertyNo)

• Can only have one PRIMARY KEY clause per table

• Can still ensure uniqueness for alternate keys using
UNIQUE:

UNIQUE(telNo)

Pearson Education © 2009

120

IEF - Referential Integrity

• FK is column or set of columns that links each
row in child table containing foreign FK to row of
parent table containing matching PK

• Referential integrity means that, if FK contains
value, that value must refer to existing row in
parent table

• ISO standard supports definition of FKs with
FOREIGN KEY clause in CREATE and ALTER TABLE:

FOREIGN KEY(branchNo) REFERENCES Branch

Pearson Education © 2009

121

IEF - Referential Integrity

• Any INSERT/UPDATE attempting to create FK
value in child table without matching CK value in
parent is rejected

• Action taken attempting to update/delete CK
value in parent table with matching rows in child
is dependent on referential action specified
using ON UPDATE and ON DELETE subclauses:

– CASCADE - SET NULL
– SET DEFAULT - NO ACTION

Pearson Education © 2009

122

IEF - Referential Integrity

CASCADE: Delete row from parent and delete matching rows in
child, in cascading manner

SET NULL: Delete row from parent and set FK column(s) in child
to NULL

Only valid if FK columns are NOT NULL

SET DEFAULT: Delete row from parent and set each component
of FK in child to specified default

Only valid if DEFAULT specified for FK columns

NO ACTION: Reject delete from parent - Default

Pearson Education © 2009

123

IEF - Referential Integrity

FOREIGN KEY (staffNo) REFERENCES Staff
ON DELETE SET NULL

FOREIGN KEY (ownerNo) REFERENCES Owner
ON UPDATE CASCADE

Pearson Education © 2009

124

IEF - General Constraints

• Could use CHECK/UNIQUE in CREATE and
ALTER TABLE

• Similar to CHECK clause:

CREATE ASSERTION AssertionName

CHECK (searchCondition)

Pearson Education © 2009

125

IEF - General Constraints

CREATE ASSERTION StaffNotHandlingTooMuch

CHECK (NOT EXISTS (SELECT staffNo

FROM PropertyForRent

GROUP BY staffNo

HAVING COUNT(*) > 100))

Pearson Education © 2009

126

Data Definition

• SQL DDL allows database objects such as
schemas, domains, tables, views, and indexes to
be created and destroyed

• Main SQLDDL statements:
CREATE SCHEMA DROP SCHEMA

CREATE/ALTER DOMAIN DROPDOMAIN

CREATE/ALTER TABLE DROPTABLE

CREATE VIEW DROPVIEW

• Many DBMSs also provide:

CREATE INDEX DROP INDEX

Pearson Education © 2009

127

Data Definition

• Relations and other database objects exist in an
environment

• Each environment contains one or more
catalogs, and each catalog consists of set of
schemas

• Schema is named collection of related database
objects

• Objects in schema can be tables, views, domains,
assertions
– All have same owner

Pearson Education © 2009

128

CREATE SCHEMA

CREATE SCHEMA [Name |

AUTHORIZATION CreatorId]

DROP SCHEMA Name [RESTRICT | CASCADE]

• With RESTRICT (default)

– Schema must be empty or operation fails

• With CASCADE

– Operation cascades to drop all objects associated
with schema in order defined above

– If any operations fail → DROP SCHEMA fails

Pearson Education © 2009

129

CREATE TABLE

CREATE TABLE TableName
{(colName dataType [NOT NULL] [UNIQUE]
[DEFAULT defaultOption]
[CHECK searchCondition] [,...]}
[PRIMARY KEY (listOfColumns),]
{[UNIQUE (listOfColumns),] […,]}
{[FOREIGN KEY (listOfFKColumns)
REFERENCES ParentTableName [(listOfCKColumns)],
[ON UPDATE referentialAction]
[ON DELETE referentialAction]] [,…]}
{[CHECK (searchCondition)] [,…] })

Pearson Education © 2009

130

CREATE TABLE

• Creates table with one or more columns of specified
dataType

• With NOT NULL

– System rejects any attempt to insert null in column

• Can specify DEFAULT value for column

• Primary keys should always be specified as NOT NULL

• FOREIGN KEY clause specifies FK along with referential
action

Pearson Education © 2009

131

Example 7.1 - CREATE TABLE

CREATE DOMAIN OwnerNumber AS VARCHAR(5)

CHECK (VALUE IN (SELECT ownerNo FROM PrivateOwner));

CREATE DOMAIN StaffNumber AS VARCHAR(5)

CHECK (VALUE IN (SELECT staffNo FROM Staff));

CREATE DOMAIN PNumber AS VARCHAR(5);

CREATE DOMAIN PRooms AS SMALLINT;

CHECK(VALUE BETWEEN 1 AND 15);

CREATE DOMAIN PRent AS DECIMAL(6,2)

CHECK(VALUE BETWEEN 0 AND 9999.99);

Pearson Education © 2009

132

Example 7.1 - CREATE TABLE

CREATE TABLE PropertyForRent (
propertyNo PNumber NOT NULL, ….
rooms PRooms NOT NULL DEFAULT 4,
rent PRent NOT NULL, DEFAULT 600,
ownerNo OwnerNumber NOT NULL,
staffNo StaffNumber

Constraint StaffNotHandlingTooMuch ….
branchNo BranchNumber NOT NULL,
PRIMARY KEY (propertyNo),
FOREIGN KEY (staffNo) REFERENCES Staff
ON DELETE SET NULL ON UPDATE CASCADE ….);

Pearson Education © 2009

133

ALTER TABLE

• Add new column

• Drop column

• Add new table constraint

• Drop table constraint

• Set default for column

• Drop default for column

Pearson Education © 2009

134

Example 7.2(a) - ALTER TABLE

Change Staff table by removing default of
‘Assistant’ for position column and setting
default for sex column to female (‘F’).

ALTER TABLE Staff

ALTER position DROP DEFAULT;

ALTER TABLE Staff

ALTER sex SET DEFAULT ‘F’;

Pearson Education © 2009

135

Example 7.2(b) - ALTER TABLE

Remove constraint from PropertyForRent
that staff are not allowed to handle more
than 100 properties at a time. Add new
column to Client table.

ALTER TABLE PropertyForRent
DROP CONSTRAINT StaffNotHandlingTooMuch;

ALTER TABLE Client
ADD prefNoRooms PRooms;

Pearson Education © 2009

136

DROP TABLE

DROP TABLE TableName [RESTRICT | CASCADE]

e.g. DROP TABLE PropertyForRent;

• Removes named table and all rows

• With RESTRICT

– If any other objects depend for their existence on continued
existence of this table → SQL does not allow request

• With CASCADE

– SQL drops all dependent objects (and objects dependent on
these objects)

Pearson Education © 2009

137

Views

View

Dynamic result of one or more relational
operations operating on base relations to
produce another relation

• Virtual relation that does not necessarily
actually exist in database but is produced
upon request, at time of request

Pearson Education © 2009

138

Views

• Contents of a view are defined as query on one or more
base relations

• View resolution

– Any operations on view automatically translated into
operations on relations from which derived

• View materialization

– View stored as temporary table

– Maintained as underlying base tables are updated

Pearson Education © 2009

139

SQL - CREATE VIEW

CREATE VIEW ViewName [(newColumnName [,...])]

AS subselect

[WITH [CASCADED | LOCAL] CHECK OPTION]

• Can assign name to each column in view

• If list of column names specified

–Must have same number of items as number of columns
produced by subselect

• If omitted

–Each column takes name of corresponding column in
subselect

Pearson Education © 2009

140

SQL - CREATE VIEW

• List must be specified if any ambiguity in column name

• Subselect known as defining query

• WITH CHECK OPTION

– Ensures if row fails to satisfy WHERE clause of defining
query - not added to underlying base table

• Need SELECT privilege on all tables referenced in subselect

• Need USAGE privilege on any domains used in referenced
columns

Pearson Education © 2009

141

Example 7.3 - Create Horizontal View

Create view so that manager at branch B003 can
only see details for staff who work in his or her
office.

CREATE VIEW Manager3Staff
AS SELECT *

FROM Staff
WHERE branchNo = ‘B003’;

Pearson Education © 2009

142

Example 7.4 - Create Vertical View

Create view of staff details at branch B003
excluding salaries.

CREATE VIEW Staff3

AS SELECT staffNo, fName, lName, position, sex

FROM Staff

WHERE branchNo = ‘B003’;

Pearson Education © 2009

143

Example 7.5 - Grouped and Joined Views

Create view of staff who manage properties
for rent, including branch number they work
at, staff number, and number of properties
they manage.

CREATE VIEW StaffPropCnt (branchNo, staffNo, cnt)

AS SELECT s.branchNo, s.staffNo, COUNT(*)

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.branchNo, s.staffNo;

Pearson Education © 2009

144

Example 7.3 - Grouped and Joined Views

Pearson Education © 2009

145

SQL - DROP VIEW

DROP VIEW ViewName [RESTRICT | CASCADE]

• Causes definition of view to be deleted from
database

• For example:

DROP VIEW Manager3Staff;

Pearson Education © 2009

146

SQL - DROP VIEW

• With CASCADE

– All related dependent objects deleted; i.e. any views
defined on view being dropped.

• With RESTRICT (default)

– If any other objects depend for existence on
continued existence of view being dropped →
command rejected

Pearson Education © 2009

147

View Resolution

Count number of properties managed by each
member at branch B003.

SELECT staffNo, cnt

FROM StaffPropCnt

WHERE branchNo = ‘B003’

ORDER BY staffNo;

Pearson Education © 2009

148

View Resolution

(a) View column names in SELECT list are
translated into corresponding column
names in defining query:

SELECT s.staffNo As staffNo, COUNT(*) As cnt

(b) View names in FROM replaced with
corresponding FROM lists of defining
query:

FROM Staff s, PropertyForRent p

Pearson Education © 2009

149

View Resolution

(c) WHERE from user query combined with WHERE
of defining query using AND:

WHERE s.staffNo = p.staffNo AND branchNo = ‘B003’

(d) GROUP BY and HAVING clauses copied from
defining query:

GROUP BY s.branchNo, s.staffNo

(e) ORDER BY copied from query with view column

name translated into defining query column

name
ORDER BY s.staffNo

Pearson Education © 2009

150

View Resolution

(f) Final merged query executed to produce
result:

SELECT s.staffNo AS staffNo, COUNT(*) AS cnt

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo AND

branchNo = ‘B003’

GROUP BY s.branchNo, s.staffNo

ORDER BY s.staffNo;

Pearson Education © 2009

151

Restrictions on Views

SQL imposes several restrictions on creation
and use of views.

(a) If column in view based on aggregate function:
– Column may appear only in SELECT and ORDER BY

clauses of queries that access view

– Column may not be used in WHERE nor be an argument
to aggregate function in any query based on view

Pearson Education © 2009

152

Restrictions on Views

• For example, following queries would fail:

SELECT COUNT(cnt)

FROM StaffPropCnt;

SELECT *

FROM StaffPropCnt

WHERE cnt > 2;

Pearson Education © 2009

153

Restrictions on Views

(b) Grouped view may never be joined with
base table or view

• For example

– StaffPropCnt view is grouped view, any
attempt to join this view with another table or
view fails

Pearson Education © 2009

154

View Updatability

• All updates to base table reflected in all
views that encompass base table

• May expect that if view updated then base
table(s) will reflect change

Pearson Education © 2009

155

View Updatability

• Consider again view StaffPropCnt
• If we tried to insert record showing that at

branch B003, SG5 manages 2 properties:

INSERT INTO StaffPropCnt
VALUES (‘B003’, ‘SG5’, 2);

• Have to insert 2 records into PropertyForRent
showing which properties SG5 manages.
However, do not know which properties they
are; i.e. do not know primary keys!

Pearson Education © 2009

156

View Updatability

• If change definition of view and replace count
with actual property numbers:

CREATE VIEW StaffPropList (branchNo,

staffNo, propertyNo)

AS SELECT s.branchNo, s.staffNo, p.propertyNo

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo;

Pearson Education © 2009

157

View Updatability

• Now try to insert the record:

INSERT INTO StaffPropList

VALUES (‘B003’, ‘SG5’, ‘PG19’);

• Still problem - in PropertyForRent all columns
except postcode/staffNo are not allowed nulls

• No way of giving remaining non-null columns
values

Pearson Education © 2009

158

View Updatability

• ISO specifies that view is updatable if and only
if:
- DISTINCT is not specified
- Every element in SELECT list of defining query is column name
and no column appears more than once
- FROM clause specifies only one table

• If source table a view – same conditions apply, excludes any views based on
join, union, intersection or difference

- No nested SELECT referencing outer table
- No GROUP BY or HAVING clause
- Every row added through view must not violate integrity
constraints of base table

Pearson Education © 2009

159

Updatable View

For view to be updatable, DBMS must be
able to trace any row or column back to its
row or column in source table

Pearson Education © 2009

160

WITH CHECK OPTION

• Rows exist in view because they satisfy WHERE
condition of defining query

• If row changes and no longer satisfies condition
- disappears from view

• New rows appear within view when
insert/update on view cause them to satisfy
WHERE condition

• Rows that enter or leave view called migrating
rows

• WITH CHECK OPTION generally prohibits row
migrating out of view

Pearson Education © 2009

161

WITH CHECK OPTION

• LOCAL/CASCADED apply to view hierarchies

• With LOCAL

– Any row insert/update on view and any view directly or
indirectly defined on this view must not cause row to
disappear from view unless row also disappears from
derived view/table

• With CASCADED (default)

– Any row insert/ update on view and on any view directly or
indirectly defined on this view must not cause row to
disappear from the view

Pearson Education © 2009

162

Example 7.6 - WITH CHECK OPTION

CREATE VIEW Manager3Staff

AS SELECT *

FROM Staff

WHERE branchNo = ‘B003’

WITH CHECK OPTION;

• Cannot update branch number of row B003 to
B002 - would cause row to migrate from view

• Cannot insert row into view with branch number
that does not equal B003

Pearson Education © 2009

163

Example 7.6 - WITH CHECK OPTION

• Consider the following:
CREATE VIEW LowSalary
AS SELECT * FROM Staff WHERE salary > 9000;

CREATE VIEW HighSalary
AS SELECT * FROM LowSalary

WHERE salary > 10000
WITH LOCAL CHECK OPTION;

CREATE VIEW Manager3Staff
AS SELECT * FROM HighSalary

WHERE branchNo = ‘B003’;

Pearson Education © 2009

164

Example 7.6 - WITH CHECK OPTION

UPDATE Manager3Staff
SET salary = 9500
WHERE staffNo = ‘SG37’;

• This update would fail: although update would
cause row to disappear from HighSalary, row
would not disappear from LowSalary

• If update tried to set salary to 8000, update
would succeed as row would no longer be part
of LowSalary

Pearson Education © 2009

165

Example 7.6 - WITH CHECK OPTION

• If HighSalary had specified WITH CASCADED
CHECK OPTION, setting salary to 9500 or
8000 would be rejected because row would
disappear from HighSalary

• To prevent anomalies like this

– Each view should be created using WITH
CASCADED CHECK OPTION

Pearson Education © 2009

166

Advantages of Views

• Data independence

• Currency

• Improved security

• Reduced complexity

• Convenience

• Customization

• Data integrity

Pearson Education © 2009

167

Disadvantages of Views

• Update restriction

• Structure restriction

• Performance

Pearson Education © 2009

168

View Materialization

• View resolution mechanism may be slow, if
view accessed frequently

• View materialization stores view as
temporary table when view first queried

• Queries based on materialized view can be
faster than recomputing view each time

• Difficulty in maintaining currency of view
while base tables(s) updated

Pearson Education © 2009

169

View Maintenance

• View maintenance aims to apply only those
changes necessary to keep view current.

• Consider following view:
CREATE VIEW StaffPropRent(staffNo)

AS SELECT DISTINCT staffNo

FROM PropertyForRent

WHERE branchNo = ‘B003’ AND

rent > 400;

Pearson Education © 2009

170

View Materialization

• If insert row into PropertyForRent with rent 400 then
view would be unchanged

• If insert row for property PG24 at branch B003 with
staffNo = SG19 and rent = 550, then row would appear
in materialized view

• If insert row for property PG54 at branch B003 with
staffNo = SG37 and rent = 450, then no new row would
need to be added to materialized view

• If delete property PG24, row should be deleted from
materialized view

• If delete property PG54, then row for PG37 should not
be deleted (because of existing property PG21)

Pearson Education © 2009

JOIN TYPES

Six types of JOINs:
1. JOIN or INNER JOIN
2. OUTER JOIN

2.1 LEFT OUTER JOIN or LEFT JOIN
2.2 RIGHT OUTER JOIN or RIGHT JOIN
2.3 FULL OUTER JOIN or FULL JOIN

3. NATURAL JOIN
4. CROSS JOIN
5. SELF JOIN
6. JOINs based on Operators

1. JOIN or INNER JOIN
• We get all records that match the condition in both the tables
• Records in both the tables that do not match are not reported
• ONLY the matching entries in BOTH the tables SHOULD be

listed
• JOIN without any other JOIN keywords (like OUTER, LEFT, etc)

is an INNER JOIN

Examples:
selectdepartment_name, first_name from departments d inner

join employees e on d.department_id = e.department_id;
OR
selectdepartment_name, first_name from departments d join

employees e on d.department_id = e.department_id;

2. OUTER JOIN
• Retrieves either, the matched rows from one table and all

rows in the other table Or, all rows in all tables
• There are three kinds:

– 2.1 LEFT OUTER JOIN or LEFT JOIN
• Returns all rows from the left table in conjunction with the matching

rows from the right table
• If there are no columns matching in the right table, it returns NULL values

– 2.2 RIGHT OUTER JOIN or RIGHT JOIN
• Returns all rows from the right table in conjunction with the matching

rows from the left table
• If there are no columns matching in the left table, it returns NULL values

– 2.3 FULL OUTER JOIN or FULL JOIN
– Combines LEFT OUTER JOIN and RIGHT OUTER JOIN
– Returns row from either table when the conditions are met and

returns NULL value when there is no match

EXAMPLES OF OUTER JOIN
• OUTER JOIN (full outer join)

Select *

FROM Table1 A FULL OUTER JOIN Table2 B OnA.Pk = B.Fk;

• LEFT JOIN

Select *

FROM Table1 A LEFT OUTER JOIN Table2 B OnA.Pk = B.Fk;

• RIGHT JOIN

Select *

FROM Table1 A RIGHT OUTER JOIN Table2 B OnA.Pk = B.Fk;

3. NATURAL JOIN
• A type of Inner join which is based on column having same name

and same datatype present in both the tables to be joined
• Based on the two conditions :

– JOIN is made on all the columns with the same name for equality
– Removes duplicate columns from the result

• Examples:
selectdepartment_name, first_name from departments d
natural join employees e ;

SELECT *
from table-name1
NATURAL JOIN
table-name2;

4. CROSS JOIN

• Cartesian product of the two tables
• Result does not make sense in most of the

situations

• Examples:
Select *
FROM TableA CROSS JOIN TableB;
• OR
Select *
FROM Table1 A1,Table1 A2;

5. SELF JOIN

• Not a different form of JOIN, rather it is a JOIN of
a table to itself

• Examples
Select m.first_name manager, w.first_name worker
From employees m inner join employees w
On m.employee_id = w.manager_id;
• OR
Select m.first_name manager, w.first_name worker
From employees m , employees w
where m.employee_id = w.manager_id;

6. JOINs based on Operators
• Depending on the operator used for a JOIN clause, there

can be two types of JOINs
– Equi JOIN

• For whatever JOIN type (INNER, OUTER, etc), if we use ONLY the
equality operator (=), then we say that the JOIN is an EQUI JOIN

– Theta or Non-Equi JOIN
• Same as EQUI JOIN but allows all other operators like >, <, >= etc

• Examples:
• Equi join
select * from departments d, employees e where

d.department_id = e.department_id;

• Theta or Non-Equi JOIN
select * from departments d, employees e where

d.department_id <> e.department_id;

