Chapter 5

SQL: Data Manipulation

SELECT Statement

SELECT [DISTINCT | ALL]

{* | [columnExpression [AS newNamel]] [,...] }
FROM TableName [alias] [, ...]
[WHERE condition]
[GROUP BY columnlList] [HAVING condition]
[ORDER BY columnlist]

SELECT Statement

SELECT Specifies which columns are to
appear in output

FROM Specifies table(s) to be used

WHERE Filters rows

GROUP BY Forms groups of rows with same
column value

HAVING Filters groups subject to some
condition

ORDER BY Specifies order of output

SELECT Statement

* Order of clauses cannot be changed

* Only SELECT and FROM are mandatory

Example 6.1 All Columns, All Rows

List full details of all staff.

SELECT staffNo, fName, IName, address,

position, sex, DOB, salary, branchNo
FROM Staff;

e Can use * as an abbreviation for ‘all columns’:

SELECT *
FROM Staff;

Example 6.1 All Columns, All Rows

Table 5.1 Result table for Example 5.1.

staffNo [fName | IName | position sex | DOB salary branchNo
SL21 John White Manager M 1-Oct-45 30000.00 | B0O05
SG37 Ann Beech Assistant F 10-Nov-60 | 12000.00 | B003
SG14 David Ford Supervisor | M 24-Mar-58 | 18000.00 | BOO3
SA9 Mary Howe Assistant F 19-Feb-70 9000.00 | B007
SG5 Susan Brand Manager F 3-Jun-40 24000.00 | BO03
SL41 Julie Lee Assistant F [3-Jun-65 9000.00 | BOOS

Example 6.2 Specific Columns, All Rows

Produce a list of salaries for all staff, showing
only staff number, first and last names, and
salary.

SELECT staffNo, fName, IName, salary
FROM Staff;

Example 6.2 Specific Columns, All Rows

Table 5.2 Result table for Example 5.2.

staffNo | fName | IName | salary

SL21 John White 30000.00

SG37 Ann Beech 12000.00
SG14 David Ford 18000.00
SA9 Mary Howe 9000.00
SGS Susan Brand 24000.00

SL41 Julie Lee 9000.00

Example 6.3 Use of DISTINCT

List the property numbers of all properties
that have been viewed.

SELECT propertyNo
FROM Viewing; propertyNo
PA 14
PG4
PG4
PA 14

PG36

Example 6.3 Use of DISTINCT

* Use DISTINCT to eliminate duplicates:

SELECT DISTINCT propertyNo
FROM Viewing;

propertyNo

PA14
PG4
PG36

Example 6.4 Calculated Fields

Produce list of monthly salaries for all staff,

showing staff number, first/last name, and
salary.

SELECT staffNo, fName, IName, salary/12

Table 5.4 Result table for Example 5.4.

11

staffNo fName IName col4

SL.21 John White 2500.00
SG37 Ann Beech 1000.00
SG14 David Ford 1500.00
SA9 Mary Howe 750.00
SGS5 Susan Brand 2000.00
SL41 Julie Lee 750.00

Example 6.4 Calculated Fields

* To name column, use AS clause:

SELECT staffNo, fName, IName, salary/12

AS monthlySalary
FROM Staff;

Example 6.5 Comparison Search Condition

List all staff with a salary greater than 10,000.

SELECT staffNo, fName, IName, position,

salary

FROM Staff

\ Table 5.5 Result table for Example 5.5.
staffNo fName IName position salary
SL.21 John White Manager 30000.00
SG37 Ann Beech Assistant 12000.00
SGl14 David Ford Supervisor 18000.00
SGS5 Susan Brand Manager 24000.00

13

Example 6.6 Compound Comparison Search Condition

List addresses of all branch offices in London
or Glasgow.

SELECT *
FROM Branch
WHERE city = ‘London’ OR city = ‘Glasgow’;

Table 5.6 Result table for Example 5.6.

branchNo street city postcode
B0OOS5 22 Deer Rd LLondon SWI1 4EH
B0O0O3 163 Main St Glasgow G111 9QX
B0O02 56 Clover Dr LLondon NWI10 6EU

14

Example 6.7 Range Search Condition

List all staff with a salary between 20,000 and
30,000.

SELECT staffNo, fName, IName, position,
salary

FROM Staff
WHERE salary BETWEEN 20000 AND 30000;

e BETWEEN test includes endpoints of range

Example 6.7 Range Search Condition

16

Table 5.7 Result table for Example 5.7.

staffNo | fName | IName | position | salary
SL21 John White Manager | 30000.00
SGS Susan Brand Manager | 24000.00

Example 6.7 Range Search Condition

* Negated version - NOT BETWEEN

 BETWEEN does not add much to SQL’s
expressive power. Could also write:

SELECT staffNo, fName, IName, position, salary
FROM Staff
WHERE salary>=20000 AND salary <= 30000;

e Useful for range of values

Example 6.8 Set Membership

List all managers and supervisors.

SELECT staffNo, fName, IName, position

FROM Staff
WHERE position IN (‘Manager’, ‘Supervisor’);

Table 5.8 Result table for Example 5.8.

staffNo fName IName position
SL2] John White Manager
SGl14 David Ford Supervisor
SGS5 Susan Brand Manager

18

Example 6.8 Set Membership

*Negated version (NOT IN)

* IN does not add much to SQL’s expressive power.
Could have expressed this as:

SELECT staffNo, fName, IName, position

FROM Staff

WHERE position="Manager’ OR
position=‘Supervisor’;

- IN more efficient when set contains many values

Example 6.9 Pattern Matching

Find all owners with the string ‘Glasgow’ in
their address.

SELECT ownerNo, fName, IName, address,
telNo

FROM PrivateOwner

Table 5.9 Result table for Example 5.9.

ownerNo | fName | IName | address telNo

CO87 Carol Farrel 6 Achray St, Glasgow G32 9DX | 0141-357-7419
CO40 Tina Murphy | 63 Well St, Glasgow G42 0141-943-1728
CO93 Tony Shaw 12 Park PI, Glasgow G4 OQR 0141-225-7025

20

Example 6.9 Pattern Matching

* SQL has two special pattern matching
symbols:

— %: sequence of zero or more characters
— _(underscore): any single character

* LIKE ‘%Glasgow%’ means sequence of
characters of any length containing ‘Glasgow’

Example 6.10 NULL Search Condition

List details of all viewings on property PG4
where a comment has not been supplied.

* There are 2 viewings for property PG4, one
with and one without a comment.

« Have to test for null explicitly using special
keyword IS NULL:

SELECT clientNo, viewDate

FROM Viewing

WHERE propertyNo = ‘PG4’ AND
comment IS NULL;

Example 6.10 NULL Search Condition

clientNo | viewDate

CR56 26-May-04

* Negated version (IS NOT NULL) can test for non-
null values

Example 6.11 Single Column Ordering

List salaries for all staff, arranged in
descending order of salary.

SELECT staffNo, fName, IName, salary
FROM Staff
ORDER BY salary DESC;

Example 6.11 Single Column Ordering

Table 5.11 Result table for Example 5.11.

staffNo | fName | IName | salary

SL21 John White 30000.00
SGS Susan Brand 24000.00
SG14 David Ford 18000.00
SG37 Ann Beech 12000.00
SA9 Mary Howe 9000.00

SL41 Julie Lee 9000.00

25

Example 6.12 Multiple Column Ordering

Produce abbreviated list of properties in
order of property type.

SELECT propertyNo, type, rooms, rent
FROM PropertyForRent
ORDER BY type;

Example 6.12 Multiple Column Ordering

Table 5.12(a) Result table for Example 5.12
with one sort key.

propertyNo | type rooms rent
PL94 Flat 4 400
PG4 Flat 3 350
PG36 Flat 3 375
PG16 Flat 4 450
PA14 House 6 650
PG21 House 5 600

Example 6.12 Multiple Column Ordering

* Four flats in this list - as no minor sort key
specified, system arranges these rows in any
order it chooses

* To arrange in order of rent, specify minor
order:

SELECT propertyNo, type, rooms, rent
FROM PropertyForRent
ORDER BY type, rent DESC,;

Example 6.12 Multiple Column Ordering

Table 5.12(b) Result table for Example 5.12
with two sort keys.

propertyNo | type rooms rent
PG16 Flat 4 450
PL94 Flat 4 400
PG36 Flat 3 375
PG4 Flat 3 350
PA14 House 6 650
PG21 House 5 600

29

SELECT Statement - Aggregates

* |SO standard defines five aggregate functions:

COUNT - returns number of values in specified
column

SUM - returns sum of values in specified column
AVG - returns average of values in specified column
MIN - returns smallest value in specified column

MAX - returns largest value in specified column

SELECT Statement - Aggregates

* Each operates on single column of table and
returns single value

* COUNT, MIN, and MAX apply to numeric and
non-numeric fields

— SUM and AVG used on numeric fields only

e Each function eliminates nulls first and
operates only on remaining non-null values

— Except COUNT

SELECT Statement - Aggregates

 COUNT(*) counts all rows of table
— Includes nulls and duplicate values

e Can use DISTINCT before column name to
eliminate duplicates

* DISTINCT has no effect with MIN/MAX
— Has effect with SUM/AVG

SELECT Statement - Aggregates

* Aggregate functions used only in SELECT list and HAVING
clause

* |If SELECT list includes an aggregate function and there is no
GROUP BY clause, SELECT list cannot reference column out
with aggregate function

* lllegal:

SELECT staffNo, COUNT(salary)
FROM Staff;

Example 6.13 Use of COUNT(*)

How many properties cost more than £350
per month to rent?

SELECT COUNT(*) AS myCount
FROM PropertyForRent
WHERE rent > 350;

myCount

S

Example 6.14 Use of COUNT(DISTINCT)

How many different properties viewed in
May ‘04?

SELECT COUNT(DISTINCT propertyNo) AS myCount

FROM Viewing

WHERE viewDate BETWEEN ‘1-May-(
AND ‘31-May-04’; myCount

Example 6.15 Use of COUNT and SUM

Find number of Managers and sum of their
salaries.

SELECT COUNT(staffNo) AS myCount,
SUM(salary) AS mySum

FROM Staff

WHERE position = ‘M~»~~~- .

myCount | mySum

2 54000.00

Example 6.16 Use of MIN, MAX, AVG

Find minimum, maximum, and average

staff salary.

SELECT MIN(salary) AS myMin,
MAX(salary) AS myMakx,

AVG(salary) AS myAvg

FROM Staff;

myMin

myMax

myAvg

9000.00

30000.00

17000.00

SELECT Statement - Grouping

* Use GROUP BY clause to get sub-totals

 SELECT and GROUP BY closely integrated:

— Each item in SELECT list must be single-valued
per group

— SELECT clause may only contain:

e column names

» aggregate functions

e constants

e expression involving combinations of above

SELECT Statement - Grouping

* All column names in SELECT list must appear in GROUP BY
clause unless name used only in aggregate function

* If WHERE used with GROUP BY:
— WHERE applied first

— Then groups formed from remaining rows satisfying
predicate

* ISO considers two nulls to be equal for purposes of GROUP
BY

Example 6.17 Use of GROUP BY

Find number of staff in each branch and
their total salaries.

SELECT branchNo,
COUNT(staffNo) AS myCount,
SUM(salary) AS mySum
FROM Staff
GROUP BY branchNo
ORDER BY branchNo;

41

Example 6.17 Use of GROUP BY

pbranchNo | myCount | mySum

B003 3 54000.00
B0O05 2 39000.00
BOO7 1 9000.00

Restricted Groupings — HAVING clause

HAVING clause designed for use with GROUP BY to restrict
groups that appear in final result table

Similar to WHERE:
— WHERE filters individual rows
— HAVING filters groups

Column names in HAVING clause must appear in GROUP BY
list or be contained within aggregate function

Example 6.18 Use of HAVING

For each branch with more than 1 member of
staff, find number of staff in each branch and
sum of their salaries.

SELECT branchNo,
COUNT(staffNo) AS myCount,
SUM(salary) AS mySum
FROM Staff
GROUP BY branchNo
HAVING COUNT(staffNo) > 1
ORDER BY branchNo;

44

Example 6.18 Use of HAVING

oranchNo | myCount | mySum
B0O03 3 54000.00
B0O0S5 2 39000.00

Subqueries

e Some SQL statements can have SELECT
embedded within them

 Ssubselect can be used in WHERE and
HAVING clauses of an outer SELECT

— Called subquery or nested query

 Subselects may also appear in INSERT,
UPDATE, and DELETE statements

Example 6.19 Subquery with Equality

List staff who work in branch at ‘163 Main St’.

SELECT staffNo, fName, IName, position
FROM Staff
WHERE branchNo =

(SELECT branchNo

FROM Branch

WHERE street = ‘163 Main St’);

Example 6.19 Subquery with Equality

* Inner SELECT finds branch number for branch
at ‘163 Main St’ (‘B003’).

e Outer SELECT then retrieves details of all
staff who work at this branch.

e QOuter SELECT then becomes:

SELECT staffNo, fName, IName, position
FROM Staff
WHERE branchNo = ‘B003’;

48

Example 6.19 Subquery with Equality

Table 5.19 Result table for Example 5.19.

staffNo | fName | IName | position
SG37 Ann Beech Assistant
SG14 David Ford Supervisor
SG5 Susan Brand Manager

Example 6.20 Subquery with Aggregate

List all staff whose salary is greater than the average salary,
and show by how much.

SELECT staffNo, fName, IName, position,
salary — (SELECT AVG(salary) FROM Staff) As SalDiff
FROM Staff
WHERE salary >
(SELECT AVG(salary)
FROM Staff);

Example 6.20 Subquery with Aggregate

e Cannot write ‘WHERE salary > AVG(salary)’

* Instead, use subquery to find average salary
(17000), and then use outer SELECT to find
those staff with salary greater than this:

SELECT staffNo, fName, IName, position,
salary — 17000 As salDiff

FROM Staff

WHERE salary > 17000;

51

Example 6.20 Subquery with Aggregate

Table 5.20 Result table for Example 5.20.
staffNo | fName | IName | position salDiff
SL21 John White Manager 13000.00
SG14 David Ford Supervisor 1000.00
SGS Susan Brand Manager 7000.00

Subquery Rules

ORDER BY clause may not be used in subquery
— May be used in outermost SELECT

Subquery SELECT list must consist of single
column name or expression

— Except for subqueries that use EXISTS

By default, column names refer to table name
in FROM clause of subquery

Can refer to table in FROM using alias

Subquery Rules

 When subquery is operand in comparison
— Subquery must appear on right-hand side

* Subquery may not be used as operand in an
expression

Example 6.21 Nested subquery: use of IN

List properties handled by staff at ‘163 Main St’.

SELECT propertyNo, street, city, postcode, type, rooms, rent
FROM PropertyForRent
WHERE staffNo IN
(SELECT staffNo
FROM Staff
WHERE branchNo =
(SELECT branchNo
FROM Branch
WHERE street = ‘163 Main St’));

Chapter 6

SQL: Data Manipulation Cont’d

ANY and ALL

ANY and ALL used with subqueries that
produce single column of numbers

ALL

— Condition only true if satisfied by all values
produced by subquery

ANY

— Condition true if satisfied by any values produced
by subquery

If subquery empty

— ALL returns true

— ANY returns false

SOME may be used in place of ANY

Example 6.22 Use of ANY/SOME

Find staff whose salary is larger than salary of
at least one member of staff at branch B003.

SELECT staffNo, fName, IName, position, salary
FROM Staff
WHERE salary > SOME

(SELECT salary

FROM Staff

WHERE branchNo = ‘B003’);

Example 6.22 Use of ANY/SOME

* Inner query produces set {12000, 18000,
24000} and outer query selects those staff
whose salaries are greater than any values in

- Table 5.22 Result table for Example 5.22.

staffNo | fName | IName | position salary

SL21 John White Manager 30000.00
SG14 David Ford Supervisor | 18000.00
SG5 Susan Brand Manager 24000.00

58

Example 6.23 Use of ALL

Find staff whose salary is larger than salary
of every member of staff at branch B003.

SELECT staffNo, fName, IName, position, salary
FROM Staff
WHERE salary > ALL

(SELECT salary

FROM Staff

WHERE branchNo = ‘B003’);

Example 6.23 Use of ALL

Table 5.23 Result table for Example 5.23.

staffNo

fName

IName

position

salary

SL21

John

White

Manager

30000.00

60

Multi-Table Queries

Can use subqueries provided result columns
come from same table

If result columns come from more than one
table

— Must use join

To perform join
— Include more than one table in FROM clause

Use comma as separator and typically include
WHERE clause to specify join column(s)

Multi-Table Queries

e Possible to use alias for table named in
FROM clause

* Alias separated from table name with space

* Alias can be used to qualify column names
when there is ambiguity

Example 6.24 Simple Join

List names of all clients who have viewed a
property along with any comment supplied.

SELECT c.clientNo, fName, IName,
propertyNo, comment

FROM Client c, Viewing v

WHERE c.clientNo = v.clientNo;

Example 6.24 Simple Join

* Only those rows from both tables that have
identical
(c.clientNo = v.clientNo) included in result

values

in

clientNo

columns

* Eauivalent to eaui-ioin in relational algebra
Table 5.24 Result table for Example 5.24.

clientNo | fName | IName | propertyNo | comment
CR56 Aline Stewart | PG36

CR56 Aline Stewart | PAl4 too small
CR56 Aline Stewart | PG4

CR62 Mary Tregear | PAl4 no dining room
CR76 John Kay PG4 oo remote

Alternative JOIN Constructs

e SQL provides alternative ways to specify joins:

FROM Client ¢ JOIN Viewing v ON c.clientNo = v.clientNo
FROM Client JOIN Viewing USING clientNo
FROM Client NATURAL JOIN Viewing

* FROM replaces original FROM and WHERE

Example 6.25 Sorting a join

For each branch, list numbers and names
of staff who manage properties, and
properties they manage.

SELECT s.branchNo, s.staffNo, fName, IName,
propertyNo

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

ORDER BY s.branchNo, s.staffNo, propertyNo;

67

Example 6.25 Sorting a join

Table 5.25 Result table for Example 5.25.

branchNo | staffNo | fName | IName | propertyNo
B003 SG14 David Ford PG16
B0O3 SG37 Ann Beech PG21
B0O3 SG37 Ann Beech PG36
B005 SL41 Julie Lee PL94
B00O7 SA9 Mary Howe PA14

Example 6.26 Three Table Join

For each branch, list staff who manage
properties, including city in which branch is
located and properties they manage.

SELECT b.branchNo, b.city, s.staffNo, fName, IName,
propertyNo

FROM Branch b, Staff s, PropertyForRent p

WHERE b.branchNo = s.branchNo AND
s.staffNo = p.staffNo

ORDER BY b.branchNo, s.staffNo, propertyNo;

Example 6.26 Three Table Join

Table 5.26 Result table for Example 5.26.
branchNo | city staffNo | fName | IName | propertyNo
B0OO3 Glasgow SGl14 David Ford PGI16
B0OO3 Glasgow SG37 Ann Beech PG21
B003 Glasgow SG37 Ann Beech PG36
B0OOS LLondon SLA41 Julie Lee PLY94
B0OO7 Aberdeen SA9 Mary Howe PA14

e Alternative formulation for FROM and WHERE:

FROM (Branch b JOIN Staff s USING branchNo) AS
bs JOIN PropertyForRent p USING staffNo

69

Example 6.27 Multiple Grouping Columns

Find number of properties handled by each
staff member by branch.

SELECT s.branchNo, s.staffNo, COUNT(*) AS myCount
FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.branchNo, s.staffNo

ORDER BY s.branchNo, s.staffNo;

Example 6.27 Multiple Grouping Columns

branchNo | staffNo | myCount

B003 SG14 |
B003 SG37 2
B005 SLA1 |
BOO7 SA9 |

Computing a Join

Procedure for generating results of a join are:

1. Form Cartesian product of tables named in FROM clause
2. If WHERE clause:
— Apply search condition to each row of product table
— Retain rows that satisfy condition

3. For each remaining row, determine value of each item in
SELECT list to produce single row in result table

Computing a Join

4. If DISTINCT specified, eliminate any duplicate
rows from result table

6. If ORDER BY clause, sort result table as
required

Outer Joins

If one row of joined table is unmatched, row
omitted from result table

Outer join operations retain rows that do not
satisfy join condition

Consider following tables:

Branch? PropertyForRent1
branchNo | bCity propertyNo | pCity
B0OO3 Glasgow PA14 Aberdeen
B004 Bristol PL94 LLondon
B002 London PG4 Glasgow

Outer Joins

* The (inner) join of these two tables:

75

SELECT b.*, p.*
FROM Branchl b, PropertyForRentl p
WHERE b.bCity = p.pCity;

Table 5.27(b) Result table for inner join of Branch1
and PropertyForRent1 tables.

branchNo | bCity propertyNo | pCity

B0O3 Glasgow | PG4 Glasgow
B002 L.ondon PL94 London

Example 6.28 Left Outer Join

List branches and properties that are in
same city along with any unmatched
branches.

SELECT b.*, p.*
FROM Branchl b LEFT JOIN
PropertyForRentl p ON b.bCity = p.pCity;

Example 6.28 Left Outer Join

* Includes rows of first (left) table unmatched
with rows from second (right) table

e Columns from second table filled with NULLs

Table 5.28 Result table for Example 5.28.

branchNo | bCity propertyNo | pCity

B0OO3 Glasgow | PG4 Glasgow
B0O04 Bristol NULL NULL
B002 LLondon PL.94 [London

77

Example 6.29 Right Outer Join

List branches and properties in same city
and any unmatched properties.

SELECT b.*, p.*
FROM Branchl b RIGHT JOIN
PropertyForRentl p ON b.bCity = p.pCity;

Example 6.29 Right Outer Join

* Right Outer join includes rows of second
(right) table unmatched with rows from first

(left) table

* Columns from first table filled with NULLs
Table 5.29 Result table for Example 5.29.

branchNo | bCity propertyNo | pCity

NULL NULL PA14 Aberdeen
B0O3 Glasgow | PG4 Glasgow
B002 LLondon PL94 LLondon

Example 6.30 Full Outer Join

List branches and properties in same city
and any unmatched branches or properties.

SELECT b.*, p.*
FROM Branchl b FULL JOIN
PropertyForRentl p ON b.bCity = p.pCity;

Example 6.30 Full Outer Join

* Includes rows unmatched in both tables
e Unmatched columns filled with NULLs

Table 5.30 Result table for Example 5.30.

branchNo | bCity propertyNo | pCity

NULL NULL PA14 Aberdeen
B00O3 Glasgow | PG4 Glasgow
B004 Bristol NULL NULL

B002 LL.ondon PLL94 LLondon

81

EXISTS and NOT EXISTS

« EXISTS and NOT EXISTS used only with
subqueries

* Produce simple true/false result

* True if and only if there exists at least one
row in result table returned by subquery

* False if subguery returns empty result table

 NOT EXISTS is the opposite of EXISTS

EXISTS and NOT EXISTS

* As (NOT) EXISTS check only for existence or
non-existence of rows in subquery result

table, subquery can contain any number of
columns

* Common for subqueries following (NOT)
EXISTS to be of form:

(SELECT *...)

Example 6.31 Query using EXISTS

Find all staff who work in a London branch.

SELECT staffNo, fName, IName, position
FROM Staff s
WHERE EXISTS
(SELECT *
FROM Branch b
WHERE s.branchNo = b.branchNo AND
city = ‘London’);

Example 6.31 Query using EXISTS

Table 5.31 Result table for Example 5.31.
staffNo | fName | IName | position
SL21 John White Manager
SL41 Julie Lee Assistant

85

Example 6.31 Query using EXISTS

* Note, search condition s.branchNo =
b.branchNo is necessary to consider correct
branch record for each member of staff

* |If omitted, would get all staff records listed
out because subquery:

SELECT * FROM Branch WHERE city=‘London’

* would always be true and query would be:

SELECT staffNo, fName, IName, position FROM Staff
WHERE true;

Example 6.31 Query using EXISTS

* Could also write this query using join
construct:

SELECT staffNo, fName, IName, position

FROM Staff s, Branch b

WHERE s.branchNo = b.branchNo AND
city = ‘London’;

Union, Intersect, and Difference (Except)

e Can use normal set operations of Union,
Intersection, and Difference to combine results
of two or more queries into single result table

e Union of two tables, A and B, is table
containing all rows in either A or B or both

* Intersection is table containing all rows
common to both A and B

* Difference is table containing all rows in A but
hotinB

 Two tables must be union compatible

Union, Intersect, and Difference (Except)

 Format of set operator clause in each case is:

op [ALL] [CORRESPONDING [BY {columnl |, ...]}]]

* |f CORRESPONDING BY specified, set operation
performed on the named column(s)

* |f CORRESPONDING specified but not BY clause,
operation performed on common columns

* |f ALL specified, result can include duplicate rows

Union, Intersect, and Difference (Except)

RUS RNS R-S

r-
rR*

(a) Union (b) Intersection (c) Difference

90

Example 6.32 Use of UNION

List all cities where there is either a branch
office or a property.

(SELECT city

FROM Branch

WHERE city IS NOT NULL) UNION
(SELECT city

FROM PropertyForRent

WHERE city IS NOT NULL);

Example 6.32 Use of UNION

e Or

(SELECT *
FROM Branch
WHERE city IS NOT NULL)
UNION CORRESPONDING BY city
(SELECT *
FROM PropertyForRent
WHERE city IS NOT NULL);

Example 6.32 Use of UNION

* Produces result tables from both queries and
merges both tables together.
Table 5.32 Result table for Example 5.32.

city

London
Glasgow
Aberdeen
Bristol

Example 6.33 Use of INTERSECT

List all cities where there is both a branch
office and a property.

(SELECT city FROM Branch)
INTERSECT
(SELECT city FROM PropertyForRent);

Example 6.33 Use of INTERSECT

* Or

(SELECT * FROM Branch)
INTERSECT CORRESPONDING BY city
(SELECT * FROM PropertyForRent);

Table 5.33 Result table for Example 5.33.

city

Aberdeen
Glasgow
L.ondon

Example 6.33 Use of INTERSECT

 Could rewrite this query without INTERSECT
operator:

SELECT b.city
FROM Branch b PropertyForRent p
WHERE b.city = p.city;

* Or:
SELECT DISTINCT city FROM Branch b
WHERE EXISTS

(SELECT * FROM PropertyForRent p
WHERE p.city = b.city);

Example 6.34 Use of EXCEPT

List of all cities where there is a branch office
but no properties.

(SELECT city FROM Branch)

EXCEPT

(SELECT city FROM PropertyForRent);
* Or

(SELECT * FROM Branch) Tabe 534 Rl e forExape 5.4,

EXCEPT CORRESPONDING BY city

(SELECT * FROM PropertyForRent); cly

Bristol

Example 6.34 Use of EXCEPT

* Could rewrite this query without EXCEPT:

SELECT DISTINCT city FROM Branch
WHERE city NOT IN
(SELECT city FROM PropertyForRent);

* Or

SELECT DISTINCT city FROM Branch b
WHERE NOT EXISTS
(SELECT * FROM PropertyForRent p
WHERE p.city = b.city);

INSERT

INSERT INTO TableName [(columnList)]
VALUES (dataValuelist)

e columnlist optional; if omitted, SQL assumes list
of all columns in original CREATE TABLE order

* Any columns omitted must have been declared
as NULL when table was created, unless
DEFAULT specified when creating column

INSERT

e dataValuelist must match columnlist as
follows:

— number of items in each list must be same

— must be direct correspondence in position of
items in two lists

— data type of each item in dataValuelist must
be compatible with data type of corresponding
column

Example 6.35 INSERT ... VALUES

Insert a new row into Staff table supplying
data for all columns.

INSERT INTO Staff

VALUES (‘SG16’, ‘Alan’, ‘Brown’, ‘Assistant’, ‘M’
Date‘1957-05-25’, 8300, ‘B003’);

Example 6.36 INSERT using Defaults

Insert a new row into Staff table supplying
data for all mandatory columns.

INSERT INTO Staff (staffNo, fName, IName,
position, salary, branchNo)
VALUES (‘SG44’, ‘Anne’, ‘Jones’,
‘Assistant’, 8100, ‘B003’);

* Or
INSERT INTO Staff
VALUES (‘SG44’, ‘Anne’, ‘Jones’, ‘Assistant’, NULL,
NULL, 8100, ‘B003’);

INSERT ... SELECT

e Second form of INSERT allows multiple

rows to be copied from one or more tables
to another:

INSERT INTO TableName [(columnList)]
SELECT ...

Example 6.37 INSERT ... SELECT

Assume there is a table StaffPropCount that
contains names of staff and number of
properties they manage:

StaffPropCount(staffNo, fName, IName, propCnt)

Populate StaffPropCount using Staff and
PropertyForRent tables.

Example 6.37 INSERT ... SELECT

INSERT INTO StaffPropCount

(SELECT s.staffNo, fName, IName, COUNT(*)
FROM Staff s, PropertyForRent p
WHERE s.staffNo = p.staffNo
GROUP BY s.staffNo, fName, IName)
UNION
(SELECT staffNo, fName, IName, 0
FROM Staff
WHERE staffNo NOT IN

(SELECT DISTINCT staffNo

FROM PropertyForRent));

Example 6.37 INSERT ... SELECT

106

Table 5.35 Result table for Example 5.37.

staffNo | fName | IName | propCount
SG14 David Ford I
SL21] John White 0
SG37 Ann Beech 2
SA9 Mary Howe I
SGS Susan Brand 0
SL41 Julie Lee 1

ted, excludes those

staff who currently do not manage any
properties

UPDATE

UPDATE TableName
SET columnNamel = dataValuel

[, columnName2 = dataValue2...]
[WHERE searchCondition]

e TableName can be name of base table or
updatable view

* SET clause specifies names of one or more
columns to be updated

UPDATE

 WHERE clause is optional:

— if omitted, named columns are updated for all
rows in table

—if specified, only rows that satisfy
searchCondition updated

 New dataValue(s) must be compatible with
data type for corresponding column

Example 6.38/39 UPDATE All Rows

Give all staff a 3% pay increase.

UPDATE Staff
SET salary = salary*1.03;

Give all Managers a 5% pay increase.

UPDATE Staff

SET salary = salary*1.05
WHERE position = ‘Manager’;

Example 6.40 UPDATE Multiple Columns

Promote David Ford (staffNo=‘SG14’) to
Manager and change his salary to £18,000.

UPDATE Staff
SET position = ‘Manager’, salary = 18000
WHERE staffNo = ‘'SG14’;

DELETE

DELETE FROM TableName
[WHERE searchCondition]

 TableName can be name of base table or updatable view

* searchCondition optional; if omitted, all rows deleted from
table

— Table not deleted

 If search_condition specified, only rows that satisfy
condition deleted

Example 6.41/42 DELETE Specific Rows

Delete all viewings that relate to property
PG4.

DELETE FROM Viewing
WHERE propertyNo = ‘PG4’;

Delete all records from the Viewing table.

DELETE FROM Viewing;

Chapter 7

SQL: Data Definition

Pearson Education © 2009

ISO SQL Data Types

Table 6.1 ISO SQL data types.

Data type

boolean

character

bit

exact numeric
approximate numeric
datetime

interval

large objects

Declarations

BOOLEAN

CHAR VARCHAR
BIT BIT VARYING
NUMERIC DECIMAL
FLOAT REAL

DATE TIME
INTERVAL

CHARACTER LARGE OBJECT

INTEGER
DOUBLE PRECISION
TIMESTAMP

BINARY LARGE OBJECT

SMALLINT

114

Pearson Education © 2009

Integrity Enhancement Feature

* Integrity constraints:

— required data

— domain constraints
— entity integrity

— referential integrity
— general constraints.

Pearson Education © 2009

Integrity Enhancement Feature

Required Data
position VARCHAR(10) NOT NULL

Domain Constraints
(a) CHECK
sex CHAR NOT NULL
CHECK (sex IN (‘M’, ‘'F’))

Pearson Education © 2009

Integrity Enhancement Feature

(b) CREATE DOMAIN
CREATE DOMAIN DomainName [AS] dataType
[DEFAULT defaultOption]
[CHECK (searchCondition)]

For example:

CREATE DOMAIN SexType AS CHAR
CHECK (VALUE IN (‘M’, ‘F’));
sex SexType NOT NULL

Pearson Education © 2009

Integrity Enhancement Feature

e searchCondition can involve a table lookup:

CREATE DOMAIN BranchNo AS CHAR(4)
CHECK (VALUE IN (SELECT branchNo
FROM Branch));

* Domains can be removed using DROP
DOMAIN:

DROP DOMAIN DomainName
[RESTRICT | CASCADE]

Pearson Education © 2009

IEF - Entity Integrity

 Primary key of table must contain unique, non-null value
for each row

* |SO standard supports FOREIGN KEY clause in CREATE and
ALTER TABLE statements:

PRIMARY KEY(staffNo)
PRIMARY KEY(clientNo, propertyNo)

* Can only have one PRIMARY KEY clause per table

e Can still ensure uniqueness for alternate keys using
UNIQUE:

UNIQUE(telNo)

Pearson Education © 2009

IEF - Referential Integrity

* FK is column or set of columns that links each
row in child table containing foreign FK to row of
parent table containing matching PK

* Referential integrity means that, if FK contains
value, that value must refer to existing row in
parent table

* |ISO standard supports definition of FKs with
FOREIGN KEY clause in CREATE and ALTER TABLE:

FOREIGN KEY(branchNo) REFERENCES Branch

Pearson Education © 2009

IEF - Referential Integrity

 Any INSERT/UPDATE attempting to create FK
value in child table without matching CK value in
parent is rejected

* Action taken attempting to update/delete CK
value in parent table with matching rows in child
is dependent on referential action specified
using ON UPDATE and ON DELETE subclauses:

— CASCADE - SET NULL
— SET DEFAULT - NO ACTION

Pearson Education © 2009

IEF - Referential Integrity

CASCADE: Delete row from parent and delete matching rows in
child, in cascading manner

SET NULL: Delete row from parent and set FK column(s) in child
to NULL

Only valid if FK columns are NOT NULL

SET DEFAULT: Delete row from parent and set each component
of FK in child to specified default

Only valid if DEFAULT specified for FK columns
NO ACTION: Reject delete from parent - Default

Pearson Education © 2009

IEF - Referential Integrity

FOREIGN KEY (staffNo) REFERENCES Staff
ON DELETE SET NULL

FOREIGN KEY (ownerNo) REFERENCES Owner
ON UPDATE CASCADE

Pearson Education © 2009

IEF - General Constraints

* Could use CHECK/UNIQUE in CREATE and
ALTER TABLE

e Similar to CHECK clause:

CREATE ASSERTION AssertionName
CHECK (searchCondition)

Pearson Education © 2009

IEF - General Constraints

CREATE ASSERTION StaffNotHandlingTooMuch
CHECK (NOT EXISTS (SELECT staffNo
FROM PropertyForRent
GROUP BY staffNo
HAVING COUNT(*) > 100))

Pearson Education © 2009

Data Definition

* SQL DDL allows database objects such as
schemas, domains, tables, views, and indexes to
be created and destroyed

* Main SQL DDL statements:

CREATE SCHEMA DROP SCHEMA
CREATE/ALTER DOMAIN DROP DOMAIN
CREATE/ALTER TABLE DROP TABLE

CREATE VIEW DROP VIEW

* Many DBMS:s also provide:
CREATE INDEX DROP INDEX

Pearson Education © 2009

Data Definition

* Relations and other database objects exist in an
environment

e Each environment contains one or more
catalogs, and each catalog consists of set of
schemas

e Schema is named collection of related database
objects

* Objects in schema can be tables, views, domains,
assertions

— All have same owner

Pearson Education © 2009

CREATE SCHEMA

CREATE SCHEMA [Name |
AUTHORIZATION Creatorld]
DROP SCHEMA Name [RESTRICT | CASCADE]

e With RESTRICT (default)
— Schema must be empty or operation fails
 With CASCADE

— Operation cascades to drop all objects associated
with schema in order defined above

— If any operations fail > DROP SCHEMA fails

Pearson Education © 2009

CREATE TABLE

CREATE TABLE TableName
{(colName dataType [NOT NULL] [UNIQUE]
DEFAULT defaultOption]
[CHECK searchCondition] |[,...]1}
PRIMARY KEY (listOfColumns),]
{[UNIQUE (listOfColumns),] [...,]}
{[FOREIGN KEY (listOfFKColumns)
REFERENCES ParentTableName [(listOfCKColumns)],
[ON UPDATE referentialAction]
[ON DELETE referentialAction 1] [,...]1}
{[CHECK (searchCondition)] [,...] })

Pearson Education © 2009

CREATE TABLE

* Creates table with one or more columns of specified
dataType

 With NOT NULL

— System rejects any attempt to insert null in column
e Can specify DEFAULT value for column
* Primary keys should always be specified as NOT NULL

* FOREIGN KEY clause specifies FK along with referential
action

Pearson Education © 2009

Example 7.1 - CREATE TABLE

CREATE DOMAIN OwnerNumber AS VARCHAR(5)
CHECK (VALUE IN (SELECT ownerNo FROM PrivateOwner));
CREATE DOMAIN StaffNumber AS VARCHAR(5)
CHECK (VALUE IN (SELECT staffNo FROM Staff));
CREATE DOMAIN PNumber AS VARCHAR(5);
CREATE DOMAIN PRooms AS SMALLINT,;
CHECK(VALUE BETWEEN 1 AND 15);
CREATE DOMAIN PRent AS DECIMAL(6,2)
CHECK(VALUE BETWEEN 0 AND 9999.99);

Pearson Education © 2009

Example 7.1 - CREATE TABLE

CREATE TABLE PropertyForRent (

propertyNo PNumber NOT NULL,
rooms PRooms NOT NULL DEFAULT 4,
rent PRent NOT NULL, DEFAULT 600,
ownerNo OwnerNumber NOT NULL,
staffNo StaffNumber

Constraint StaffNotHandlingTooMuch
branchNo BranchNumber NOT NULL,

PRIMARY KEY (propertyNo),
FOREIGN KEY (staffNo) REFERENCES Staff
ON DELETE SET NULL ON UPDATE CASCADE);

Pearson Education © 2009

ALTER TABLE

Add new column

Drop column

Add new table constraint
Drop table constraint

Set default for column
Drop default for column

Pearson Education © 2009

Example 7.2(a) - ALTER TABLE

Change Staff table by removing default of
‘Assistant’ for position column and setting
default for sex column to female (‘F’).

ALTER TABLE Staff
ALTER position DROP DEFAULT;

ALTER TABLE Staff
ALTER sex SET DEFAULT ‘F’;

Pearson Education © 2009

Example 7.2(b) - ALTER TABLE

Remove constraint from PropertyForRent
that staff are not allowed to handle more
than 100 properties at a time. Add new
column to Client table.

ALTER TABLE PropertyForRent

DROP CONSTRAINT StaffNotHandlingTooMuch;
ALTER TABLE Client

ADD prefNoRooms PRooms;

Pearson Education © 2009

DROP TABLE

DROP TABLE TableName [RESTRICT | CASCADE]

e.g. DROP TABLE PropertyForRent;

e Removes named table and all rows

* With RESTRICT

— If any other objects depend for their existence on continued
existence of this table - SQL does not allow request

* With CASCADE

— SQL drops all dependent objects (and objects dependent on
these objects)

Pearson Education © 2009

Views

View

Dynamic result of one or more relational

operations operating on base relations to
produce another relation

e Virtual relation that does not necessarily
actually exist in database but is produced
upon request, at time of request

Pearson Education © 2009

Views

 Contents of a view are defined as query on one or more
base relations

* View resolution

— Any operations on view automatically translated into
operations on relations from which derived

* View materialization

— View stored as temporary table
— Maintained as underlying base tables are updated

Pearson Education © 2009

SQL - CREATE VIEW

CREATE VIEW ViewName [(newColumnName [,...])]
AS subselect

[WITH [CASCADED | LOCAL] CHECK OPTION]

e Can assign name to each column in view
* |If list of column names specified

—Must have same number of items as number of columns
produced by subselect

e If omitted

—Each column takes name of corresponding column in
subselect

Pearson Education © 2009

SQL - CREATE VIEW

* List must be specified if any ambiguity in column name
* Subselect known as defining query
e WITH CHECK OPTION

— Ensures if row fails to satisfy WHERE clause of defining
query - not added to underlying base table

* Need SELECT privilege on all tables referenced in subselect

* Need USAGE privilege on any domains used in referenced
columns

Pearson Education © 2009

Example 7.3 - Create Horizontal View

141

CREATE VIEW Manager3Staff
SELECT *
FROM Staff
WHERE branchNo = ‘B003’;

Table 6.3 Data for view Manager3Staff.

AS

Create view so that manager at branch B003 can

only see details for staff who work in his or her
office.

staffNo | fName | IName | position sex | DOB salary branchNo
SG37 Ann Beech Assistant F 10-Nov-60 | 12000.00 | B003
SG14 David Ford Supervisor | M 24-Mar-58 18000.00 | BOO3
SGS5 Susan Brand Manager F 3-Jun-40 24000.00 | B0OO3

Pearson Education © 2009

Example 7.4 - Create Vertical View

Create view of staff details at branch B003
excluding salaries.

CREATE VIEW Staff3

AS SELECT staffNo, fName, IName, position, sex

FROM Staff

\WWHFRF hranrhNnAn = ‘RNN’.
Table 6.4 Data for view Staff3.

staffNo | fName | IName | position sex
SG37 Ann Beech Assistant F
SG14 David Ford Supervisor | M
SGS Susan Brand Manager F

Pearson Education © 2009

Example 7.5 - Grouped and Joined Views

Create view of staff who manage properties
for rent, including branch number they work
at, staff number, and number of properties
they manage.

CREATE VIEW StaffPropCnt (branchNo, staffNo, cnt)
AS SELECT s.branchNo, s.staffNo, COUNT(*)

FROM Staff s, PropertyForRent p

WHERE s.staffNo = p.staffNo

GROUP BY s.branchNo, s.staffNo;

Pearson Education © 2009

Example 7.3 - Grouped and Joined Views

Table 6.5 Data for view StaffPropCnt.

branchNo | staffNo | cnt

B0OO3 SG14 I
B0OO3 SG37 2
B0OO05 SL41 l
B0OO7 SA9 l

144 Pearson Education © 2009

SQL - DROP VIEW

DROP VIEW ViewName [RESTRICT | CASCADE]

e Causes definition of view to be deleted from
database

* For example:

DROP VIEW Manager3Staff;

Pearson Education © 2009

SQL - DROP VIEW

* With CASCADE

— All related dependent objects deleted; i.e. any views
defined on view being dropped.

 With RESTRICT (default)

—If any other objects depend for existence on
continued existence of view being dropped ->
command rejected

Pearson Education © 2009

View Resolution

Count number of properties managed by each
member at branch B003.

SELECT staffNo, cnt

FROM StaffPropCnt
WHERE branchNo = ‘B003’
ORDER BY staffNo;

Pearson Education © 2009

View Resolution

(a) View column names in SELECT list are
translated into corresponding column
names in defining query:

SELECT s.staffNo As staffNo, COUNT(*) As cnt

(b) View names in FROM replaced with
corresponding FROM lists of defining

query:
FROM Staff s, PropertyForRent p

Pearson Education © 2009

View Resolution

(c) WHERE from user query combined with WHERE
of defining query using AND:

WHERE s.staffNo = p.staffNo AND branchNo = ‘B003’

(d) GROUP BY and HAVING clauses copied from
defining query:
GROUP BY s.branchNo, s.staffNo
(e) ORDER BY copied from query with view column
name translated into defining query column

name
ORDER BY s.staffNo

Pearson Education © 2009

View Resolution

(f) Final merged query executed to produce
result:

SELECT s.staffNo AS staffNo, COUNT(*) AS cnt
FROM Staff s, PropertyForRent p
WHERE s.staffNo = p.staffNo AND
branchNo = ‘B003’
GROUP BY s.branchNo, s.staffNo
ORDER BY s.staffNo;

Pearson Education © 2009

Restrictions on Views

SQL imposes several restrictions on creation
and use of views.

(a) If column in view based on aggregate function:

— Column may appear only in SELECT and ORDER BY
clauses of queries that access view

— Column may not be used in WHERE nor be an argument
to aggregate function in any query based on view

Pearson Education © 2009

Restrictions on Views

* For example, following queries would fail:
SELECT COUNT(cnt)
FROM StaffPropCnt;

SELECT *
FROM StaffPropCnt
WHERE cnt > 2;

Pearson Education © 2009

Restrictions on Views

(b) Grouped view may never be joined with
base table or view

* For example

— StaffPropCnt view is grouped view, any
attempt to join this view with another table or
view fails

Pearson Education © 2009

View Updatability

 All updates to base table reflected in all
views that encompass base table

 May expect that if view updated then base
table(s) will reflect change

Pearson Education © 2009

View Updatability

* Consider again view StaffPropCnt

 |If we tried to insert record showing that at
branch B003, SG5 manages 2 properties:

INSERT INTO StaffPropCnt
VALUES (‘B003’, ‘SG5’, 2);

 Have to insert 2 records into PropertyForRent
showing which properties SG5 manages.
However, do not know which properties they
are; i.e. do not know primary keys!

Pearson Education © 2009

View Updatability

* If change definition of view and replace count
with actual property numbers:

CREATE VIEW StaffProplList (branchNo,
staffNo, propertyNo)
AS SELECT s.branchNo, s.staffNo, p.propertyNo
FROM Staff s, PropertyForRent p
WHERE s.staffNo = p.staffNo;

Pearson Education © 2009

View Updatability

* Now try to insert the record:

INSERT INTO StaffProplList
VALUES (‘B003’, ‘SG5’, ‘PG19’);

 Still problem - in PropertyForRent all columns
except postcode/staffNo are not allowed nulls

* No way of giving remaining non-null columns
values

Pearson Education © 2009

View Updatability

* |ISO specifies that view is updatable if and only
if:
- DISTINCT is not specified

- Every element in SELECT list of defining query is column name
and no column appears more than once

- FROM clause specifies only one table

* If source table a view — same conditions apply, excludes any views based on
join, union, intersection or difference

- No nested SELECT referencing outer table
- No GROUP BY or HAVING clause

- Every row added through view must not violate integrity
constraints of base table

Pearson Education © 2009

Updatable View

For view to be updatable, DBMS must be
able to trace any row or column back to its
row or column in source table

Pearson Education © 2009

WITH CHECK OPTION

Rows exist in view because they satisfy WHERE
condition of defining query

If row changes and no longer satisfies condition
- disappears from view

New rows appear within view when
insert/update on view cause them to satisfy
WHERE condition

Rows that enter or leave view called migrating
rows

WITH CHECK OPTION generally prohibits row
migrating out of view

Pearson Education © 2009

WITH CHECK OPTION

 LOCAL/CASCADED apply to view hierarchies
 With LOCAL

— Any row insert/update on view and any view directly or
indirectly defined on this view must not cause row to
disappear from view unless row also disappears from
derived view/table

e With CASCADED (default)

— Any row insert/ update on view and on any view directly or
indirectly defined on this view must not cause row to
disappear from the view

Pearson Education © 2009

Example 7.6 - WITH CHECK OPTION

CREATE VIEW Manager3Staff
AS SELECT *

FROM Staff

WHERE branchNo = ‘B003’
WITH CHECK OPTION;

e Cannot update branch number of row B003 to
B002 - would cause row to migrate from view

e Cannot insert row into view with branch number
that does not equal B0O03

Pearson Education © 2009

Example 7.6 - WITH CHECK OPTION

* Consider the following:
CREATE VIEW LowSalary
AS SELECT * FROM Staff WHERE salary > 9000;
CREATE VIEW HighSalary
AS SELECT * FROM LowsSalary
WHERE salary > 10000
WITH LOCAL CHECK OPTION;
CREATE VIEW Manager3Staff
AS SELECT * FROM HighSalary
WHERE branchNo = ‘B003’;

Pearson Education © 2009

Example 7.6 - WITH CHECK OPTION

UPDATE Manager3Staff
SET salary = 9500
WHERE staffNo = ‘SG37’;

* This update would fail: although update would
cause row to disappear from HighSalary, row
would not disappear from LowSalary

* |If update tried to set salary to 8000, update
would succeed as row would no longer be part
of LowSalary

Pearson Education © 2009

Example 7.6 - WITH CHECK OPTION

* |If HighSalary had specified WITH CASCADED
CHECK OPTION, setting salary to 9500 or
8000 would be rejected because row would

disappear from HighSalary

* To prevent anomalies like this

— Each view should be created using WITH
CASCADED CHECK OPTION

Pearson Education © 2009

Advantages of Views

Data independence
Currency

Improved security
Reduced complexity
Convenience
Customization

Data integrity

Pearson Education © 2009

Disadvantages of Views

* Update restriction
e Structure restriction
e Performance

Pearson Education © 2009

View Materialization

View resolution mechanism may be slow, if
view accessed frequently

View materialization stores view as
temporary table when view first queried

Queries based on materialized view can be
faster than recomputing view each time

Difficulty in maintaining currency of view
while base tables(s) updated

Pearson Education © 2009

View Maintenance

* View maintenance aims to apply only those
changes necessary to keep view current.

* Consider following view:

CREATE VIEW StaffPropRent(staffNo)

AS SELECT DISTINCT staffNo ‘
Table 6.8 Data for

FROM PropertyForRent view StaffPropRent.
WHERE branchNo = ‘B003’ AND
rent > 400; staffNo

SG37
SG14

Pearson Education © 2009

View Materialization

If insert row into PropertyForRent with rent <400 then
view would be unchanged

If insert row for property PG24 at branch B003 with
staffNo = SG19 and rent = 550, then row would appear
in materialized view

If insert row for property PG54 at branch B003 with
staffNo = SG37 and rent = 450, then no new row would
need to be added to materialized view

If delete property PG24, row should be deleted from
materialized view

If delete property PG54, then row for PG37 should not
be deleted (because of existing property PG21)

Pearson Education © 2009

JOIN TYPES

Six types of JOINs:
1. JOIN or INNER JOIN
2. OUTER JOIN
2.1 LEFT OUTER JOIN or LEFT JOIN
2.2 RIGHT OUTER JOIN or RIGHT JOIN
2.3 FULL OUTER JOIN or FULL JOIN
3. NATURAL JOIN
4. CROSS JOIN
5. SELF JOIN
6. JOINs based on Operators

1. JOIN or INNER JOIN

* We get all records that match the condition in both the tables
* Records in both the tables that do not match are not reported

* ONLY the matching entries in BOTH the tables SHOULD be
listed

e JOIN without any other JOIN keywords (like OUTER, LEFT, etc)
is an INNER JOIN

Examples:

selectdepartment_name, first_name from departments d inner
join employees e on d.department_id = e.department _id;

OR

selectdepartment_name, first_name from departments d join
employees e on d.department_id = e.department_id;

2. OUTER JOIN

* Retrieves either, the matched rows from one table and all
rows in the other table Or, all rows in all tables

e There are three kinds:
— 2.1 LEFT OUTER JOIN or LEFT JOIN

e Returns all rows from the left table in conjunction with the matching
rows from the right table

 If there are no columns matching in the right table, it returns NULL values

— 2.2 RIGHT OUTER JOIN or RIGHT JOIN

* Returns all rows from the right table in conjunction with the matching
rows from the left table

 If there are no columns matching in the left table, it returns NULL values

— 2.3 FULL OUTER JOIN or FULL JOIN
— Combines LEFT OUTER JOIN and RIGHT OUTER JOIN

— Returns row from either table when the conditions are met and
returns NULL value when there is no match

EXAMPLES OF OUTER JOIN

 OUTER JOIN (full outer join)
Select *
FROM Tablel A FULL OUTER JOIN Table2 B OnA.Pk = B.Fk;

e LEFTJOIN
Select *
FROM Tablel A LEFT OUTER JOIN Table2 B OnA.Pk = B.Fk;

e RIGHT JOIN
Select *
FROM Table1l A RIGHT OUTER JOIN Table2 B OnA.Pk = B.Fk;

3. NATURAL JOIN

* Atype of Inner join which is based on column having same name
and same datatype present in both the tables to be joined

* Based on the two conditions :
— JOIN is made on all the columns with the same name for equality
— Removes duplicate columns from the result

 Examples:
selectdepartment_name, first_name from departments d
natural join employees e ;

SELECT *

from table-namel
NATURAL JOIN
table-name?2;

4. CROSS JOIN

e Cartesian product of the two tables

e Result does not make sense in most of the
situations

 Examples:

Select *

FROM TableA CROSS JOIN TableB;
* OR

Select *

FROM Tablel Al,Tablel A2;

5. SELF JOIN

 Not a different form of JOIN, rather it is a JOIN of
a table to itself

 Examples

Select m.first_name manager, w.first_name worker
From employees m inner join employees w

On m.employee id = w.manager _id;

* OR

Select m.first_name manager, w.first_name worker
From employees m, employees w

where m.employee id = w.manager _id;

6. JOINs based on Operators

* Depending on the operator used for a JOIN clause, there
can be two types of JOINs
— Equi JOIN

* For whatever JOIN type (INNER, OUTER, etc), if we use ONLY the
equality operator (=), then we say that the JOIN is an EQUI JOIN

— Theta or Non-Equi JOIN

* Same as EQUI JOIN but allows all other operators like >, <, >= etc
 Examples:
* EqQuijoin
select * from departments d, employees e where
d.department_id = e.department _id;

 Theta or Non-Equi JOIN

select * from departments d, employees e where
d.department_id <> e.department_id;

